Проблемная ситуация как возникновение противоречия в познании

В самой общей форме проблемная ситуация может быть охарактеризована как проявление противоречия между существующим старым знанием и вновь обнаруженными результатами эмпирического или теоретического исследования. В экспериментальных и фактуальных науках такое противоречие выражается в несоответствии прежних средств и методов познания новым фактам и, прежде всего, результатам наблюдений или экспериментов. Это значит, что прежние методы оказываются неспособными объяснить вновь открытые данные.

В абстрактных науках, таких, как математика, противоречие выражается в несоответствии прежних методов обоснования новым результатам развития ее теорий, появлению более общих и фундаментальных понятий и теорий, которые впоследствии могут стать основанием отдельной математической дисциплины. Типичным примером может служить появление теории пределов О. Коши, которая устранила противоречия в математическом анализе, возникшие вследствие некритического использования понятия бесконечно малого. Действительно, в одних случаях оно приравнивалось нулю, в других — весьма малой, но конечной величине. Из-за этого возникли противоречиями парадоксы в математическом анализе, которые преодолела теория пределов, определив бесконечно малое как величину, которая стремится к нулю как своему пределу. Еще более примечательно возникновение теории множеств Г. Кантора, которая не только устранила противоречия в анализе, но и стала с единой точки зрения рассматривать объекты исследования всех математических дисциплин. Однако парадоксы, обнаруженные в этой теории, вновь выдвинули проблему обоснования математики, хотя многим ученым казалось, что теория множеств окончательно решила эту проблему.

В естествознании и фактуальных науках, имеющих дело с реальными предметами и явлениями, противоречия выражаются в несоответствии старых теоретических представлений (понятий, законов и теорий) новым объективно установленным фактам (результатам экспериментов, наблюдений и практики). Нередко наиболее радикальные противоречия сопровождаются кризисами в науке. Так, например, парадоксы в теории множеств привели к третьему кризису оснований математики, который все еще остается не преодоленным. В физике противоречия между классическими представлениями о строении вещества, излучении и поглощении энергии, свойствах пространства и времени и вновь обнаруженными экспериментальными данными привели в конце прошлого и начале нынешнего века к резкому кризису основ классических идей. Проблемы, которые были выдвинуты в связи с этим кризисом, были решены в рамках новой, неклассической физики, главное содержание которой составляют квантовая механика и теория относительности. Однако в ходе исследования и в этих науках возникают новые проблемы.

Таким образом, в какой бы форме ни выступало несоответствие между старыми теоретическими представлениями, с одной стороны, и новыми фактами и результатами развивающегося научного знания, с другой, оно свидетельствует о возникновении определенной проблемной ситуации. Поскольку степень такого несоответствия может быть весьма различной в разных науках и на различных стадиях их развития, постольку становится возможным оценить ее хотя бы качественно. Наиболее подходящим для этой цели будет введенные Т. Куном представления об аномальных фактах и нормальной науке. Такие аномальные факты обнаруживаются в рамках определенной парадигмы, с которой работает нормальная наука. Первоначально аномалии устраняются путем модификации парадигмы, а также посредством уточнения начальных и граничных условий той фундаментальной теории, на которую опирается парадигма. Однако, когда количество аномальных фактов непрерывно возрастает, и они становятся совершенно необъяснимыми в рамках существующей парадигмы, тогда, указывает Кун, аномалия «оказывается чем-то большим, нежели еще одной головоломкой нормальной науки, начинается переход к кризисному состоянию, к периоду экстраординарной науки» .